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Abstract. The φπ+π− production in pp̄ annihilation at rest is strongly enhanced by a two step mechanism
with intermediate KK̄ππ states. The relative yield of the φ production due to the resonant final state
interaction decreases with increasing total energy of the pp̄ system.

PACS. 13.75.Cs Nucleon-nucleon interactions – 12.40.-y Other models for strong interactions – 14.40.Cs
Other mesons with S=C=O, mass < 2.5 GeV

1 Introduction

The production of φ mesons in low energy pp̄ annihilation
(see [1–6] and references therein) is strongly enhanced in
some channels for which the φ production is expected to
be suppressed on the tree level according to the Okubo-
Zweig-Iizuka (OZI) rule [7–9]. These conspicuously OZI
rule violating reactions are of considerable theoretical in-
terest since they can be used for studying reaction mecha-
nisms and the nucleon structure, in particular the problem
of an intrinsic ss̄ component [10–12]. Some well-known
OZI-rule breaking mechanisms are two-step processes with
ordinary hadrons in the intermediate state [13], therefore
their role in the pp̄ annihilation must be investigated.

The two step mechanisms in nucleon-antinucleon anni-
hilation have been studied for various final states contain-
ing φ mesons [14–23]. It has been found that in the φπ and
φφ channels, which show the most dramatic violation of
the OZI rule, two-step mechanisms play an important role
and result in a cross section comparable with the experi-
mental data. However, for a number of reactions, including
pp̄→ φρ, φππ, φω, no significant contributions from two-
step mechanisms have been found. The goal of this paper
is to reanalyze the role of two-step mechanisms for the
pp̄ annihilation into the φππ channel. To this aim we go
beyond the approximations used in previous studies. The
resulting cross sections turn out to have the right order
of magnitude. The plan of the paper is as follows. Sect. 2
gives a brief summary of the experimental data and the
previous calculations. A simple model illustrating the two-
step mechanism with a resonant final state interaction is
considered in Sect. 3. The reaction pp̄→ φππ is discussed
in Sect. 4 where the two-step mechanism with the KK̄ππ
intermediate state is studied in detail. The summary of the
results is given in Sect. 5. For earlier reviews concerning
the two-step mechanisms we refer to [24–28].

2 The OZI rule violation in
pp̄→ φπ+π−, φρ, φω

Table 1 gives a summary of the experimental data on
the OZI rule violation in the φπ+π− and φρ channels at
different energies. The tree level expectations based on
the deviation of the ω − φ mixing angle from the ideal
one are (Θ − Θi)2 ∼ 4 · 10−3 [34]. The OZI rule vi-
olation in these channels is therefore rather moderate1.
The experimental branching ratios for the reactions pp̄→
ππφ, ρφ, ππω, ρω, ππKK̄ at rest are given in Table 2.

Until now the importance of the two-step mechanisms
in the reactions pp̄ → φππ, pp̄ → φρ, pp̄ → φω remained
unclear. The main attention was focused on two-particle
intermediate states (two meson doorway approximation).
The contribution of the K∗K̄ + KK̄∗ intermediate state
was considered in the unitarity approximation in [17]; the
calculated branching ratios for the φρ and φω channels
were found to be about two orders of magnitude smaller
than observed. The possibility of a large contribution of
the ρω intermediate state for the φππ channel was pointed
out in [16], however the estimate was done in unitarity
approximation and neglecting spin. Since the unitarity ap-
proximation is likely to be suppressed by threshold factors,
the off-mass-shell contributions can be large, but they are
also known to be model dependent. Intermediate states
with more than two particles should also be taken into
account.

Of special interest are the intermediate states contain-
ing KK̄, because the KK̄ production is not OZI sup-
pressed and the final state interaction (FSI) effects are
strong if the KK̄ system is produced in the region of the φ

1 This magnitude of the OZI rule breaking is often termed
nondramatic, contrary to the cases where the φ production
exceeds the estimate from φ − ω mixing by more than one
order of magnitude
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Table 1. The relative probabilities for the φρ, ωρ and φπ+π−, ωπ+π− channels in pp̄ anni-
hilation vs. antiproton momentum. Phase space corrected ratios of yields are also tabulated

pp̄(GeV/c) BR(φρ)
BR(ωρ)

· 103 BR(φπ+π−)

BR(ωπ+π−)
· 103 Ref.

measured PS corrected measured PS corrected

0 (gas) 6.3± 1.6 [1,29]
0 (gas/LX) 7.5± 2.4 [1,29]
0 (liq.) 7.0± 1.4 15± 3 [30]
0 (liq.) 4.9± 0.8 10.3± 1.6 [6]
0 (3 atm) 5.9± 0.9 12.5± 2.0 [6]
0.76 9± 5 13± 4 10.0± 2.4 19± 5 [31]
1.2 11 +3

−4
19 +5
−7

[32]

2.3 22± 13 25± 15 21± 5 30± 7 [33]
3.6 9 +4

−7
12 +5
−9

[32]

Table 2. The experimental branching ratios for pp̄ annihila-
tion at rest into ππKK̄, ρφ, and ππφ

Reaction BR Condition Ref.

pp̄→ π+π−φ 4.6(9) · 10−4 liq. [30]
5.4(10) · 10−4 gas [1]
7.7(17) · 10−4 gas LX [1]
4.7(11) · 10−4 S [1]
6.6(15) · 10−4 P [1]
3.5(4) · 10−4 liq. [6]
3.7(5) · 10−4 gas [6]

pp̄→ π+π−φ→KSKL 1.8(3) · 10−4 liq. [35]

pp̄→ ρφ 3.4(8) · 10−4 gas. [1]
4.4(12) · 10−4 gas./LX [1]
3.4(10) · 10−4 1S0 [1]
3.7(9) · 10−4 3PJ [1]

pp̄→ π+π−ω 6.6(6) · 10−2 liq. [30]

pp̄→ ρω 5.4(6) · 10−2 gas. [29]
3.0(7) · 10−2 S [29]
6.4(11) · 10−2 P [29]
2.3(2) · 10−2 liq. [30]

pp̄→ π+π−KSKL 2.41(36) · 10−3 liq. [36]
2.26(45) · 10−3 liq. [35]

resonance. The two-step mechanism pp̄→ ππKK̄ → ππφ
was estimated as well in [16] using the unitariry approx-
imation and neglecting the spin structure of the ampli-
tude, the resulting branching ratio being about one or-
der of magnitude smaller than the experimental value. In
this paper we present a more detailed calculation of this
mechanism which includes spin effects and off-shell con-
tributions. It shows that KK̄ rescattering in the KK̄ππ
system leads to a significant enhancement of the φππ pro-
duction in pp̄ annihilation at low energies which has the
right order of magnitude. Note that this straight KK̄ −φ
rescattering mechanism cannot contribute to two body fi-
nal states in the two meson doorway approximation.

3 Resonant rescattering mechanism

To illustrate the basic features of the resonant rescatter-
ing mechanism we consider a three-particle decay a→ 123
where particles 1 and 3 interact via resonance b. The total
decay amplitude corresponds to the sum of the two dia-
grams shown in Figs. 1a,b. As shown in Fig. 2, all rescat-
tering terms 1 + 2 ↔ b are taken into account by includ-
ing the mass operator Πb(p2

b) in the resonance propagator.
Here and below pn denotes the four-momentum of particle
n, p2

b = (p1 + p2)2 = s12. The imaginary part of the mass
operator Πb(s12) is determined by the width of the decay
a→ 1 + 2:

Im Πb(s12) = −√s12Γb(s12) , (1)

Γb(s12) =
g2
bP12(s12)

8πs12
(2)

where gb is the coupling constant for the decay b→ 12 (for
the sake of illustration all particles are assumed to be spin-
less in this section), and P12(s12) is the three momentum
of particles 1 and 2 in their CMS:

P12(s12)

=
1
2

√
(s12 − (m1 +m2)2)(1− (m1 −m2)2/s12) . (3)

If the resonance b is narrow, then the following approxi-
mation for the resonance propagator can be used:

1
p2
b −m2

0 −Πb(p2
b)

=
1

p2
b −m2

b + imbΓb
(4)

Fig. 1. a The amplitude T 0
a→123 for the decay a → 123 in

plane wave approximation, b The decay amplitude T resa→123 with
resonant final state interaction. c The unitarity approximation
TUAa→123 for the resonant FSI amplitude
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= +

1

2

b gb gb

Fig. 2. The equation for the propagator of resonance b coupled
to the two-particle channel (1 + 2)

where mb and Γb = Γb(m2
b) are the physical mass and the

physical width of the resonance.
The amplitude corresponding to the resonant rescat-

tering diagram in Fig. 1b has the form

T resa→123 = −(i+ β(s12))
gagbP12(s12)

8π
√
s12

gb
s12 −m2

b + imbΓb

= −(i+ β(s12))
√
s12Γb(s12)

s12 −m2
b + imbΓb

(5)

where ga is the coupling constant for the decay a → 123,
and β(s12) is the ratio of the real to imaginary part of
the loop in the diagram Fig. 1b. The imaginary part of
the loop, which corresponds to the particles 1 and 2 on
the mass shell (Fig. 1c), is determined by the coupling
constant and the phase space for the decay b→ 1+2. The
real part of the loop is divergent and must be regularized,
e.g. by subtraction or by introducing form factors in the
vertices:

ga → gaFa(s12) , (6)
gb → gbFb(s12) . (7)

The loop in the diagram of Fig. 1b can be calculated using
the dispersion relation

−(i+ β(s12))
P12(s12)√

s12
=

=
1
π

∫ ∞
(m1+m2)2

Fa(s)Fb(s)P12(s)s−1/2ds

s− s12 + iε
. (8)

Instead of specifying the subtraction point or the form
factors one can consider β as a model parameter. Neglect-
ing the real part (β = 0) corresponds to the unitarity
approximation for TUAa→123 for the resonant FSI amplitude
(Fig. 1c).

The total amplitude a→ 123 has the form

Ta→123 = ga + T resa→123 = gaA(s12) (9)

where A(s12) is the enhancement factor resulting from the
resonant final state interaction:

A(s12) =
(

1− (i+ β)mbΓb
s12 −m2

b + imbΓb

)
=
s12 −m2

b − 2mb∆

s12 −m2
b + imbΓb

. (10)

According to (9,10) the total amplitude has a pole at s12 ≈
(mb − iΓb/2)2 and a zero at s12 ≈ (mb +∆)2 where

∆ = βΓb/2 (11)

The zero of the total amplitude results from the inter-
ference between the resonant term and the nonresonant
background, and it is essential for providing the correct
asymptotic behaviour of the enhancement factor at large
s: A(s) s→±∞−→ 1 (see [38] and references therein).

The differential decay rate has the form

dΓa→123 = (2π)4 g2
a

2ma
|A((p1 + p2)2)|2 ×

× dΦ3(pa, p1, p2, p3) (12)

where dΦ3(pa, p1, p2, p3) is the differential 3-body phase
space, see Appendix A. The distribution in the invariant
mass of the pair (1+2) is given by

dΓa→123

ds12
= (2π)7 g2

a

2ma
|A(s12)|2Φ2(ma,

√
s12,m3) ×

×Φ2(
√
s12,m1,m2) (13)

Here and below Φn(m,m1, . . . ,mn) denotes the total n-
body phase space, see Appendix A.

The resonance approximation for the production of the
particles 1 and 2 corresponds to the case when only the
resonant term T resa→123 in (9) is taken into account:

dΓa→b3→123 = Γa→b3
mbΓb

|s12 −m2
b + imbΓb|2

ds12

π
(14)

Γa→b3 =
∫
dΓa→b3

= (2π)7 g2
a

2ma
(πmbΓb)(1 + β2) ×

×Φ2(ma,mb,m3)Φ2(mb,m1,m2) (15)

where β = β(m2
b). The ratio of the resonant production

rate Γa→b3 to the total rate of the decay a → 123 in the
plane wave approximation (without FSI)

Γ 0
a→123 = (2π)4 g2

a

2ma
Φ3(ma,m1,m2,m3) (16)

is given by the formula

Γa→b3
Γ 0
a→123

= (πmbΓb)(1 + β2) ×

× (2π)3Φ2(ma,mb,m3)Φ2(mb,m1,m2)
Φ3(ma,m1,m2,m3)

(17)

= (πmbΓb)(1 + β2) ×

× Φ2(ma,mb,m3)Φ2(mb,m1,m2)∫
Φ2(ma,m12,m3)Φ2(m12,m1,m2)dm2

12

.

Note that the off-shell contribution leads to the enhance-
ment factor (1 + β2). The resonance approximation (14)
can be used only for |β| À 1, otherwise one cannot neglect
the interference of the resonant term with the background.
For example, if β = 0, then the peak structure arising from
the resonance pole is completely suppressed by the zero
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in the amplitude (9,10) at s12 = m2
b , so that the produc-

tion cross section features a dip instead of a peak in the
resonance region.

The generalization to the four-particle decay a→ 1234
with final state interaction in the system (1+2) is straight-
forward. In particular, the ratio of the resonant production
rate Γa→b34 to the total rate of the decay a→ 1234 in the
plane wave approximation is given by the formula

Γa→b34

Γ 0
a→1234

= (πmbΓb)(1 + β2) ×

× (2π)3Φ3(ma,mb,m3,m4)Φ2(mb,m1,m2)
Φ4(ma,m1,m2,m3,m4)

(18)

= (πmbΓb)(1 + β2) ×

× Φ3(ma,mb,m3,m4)Φ2(mb,m1,m2)∫
Φ3(ma,m12,m3,m4)Φ2(m12,m1,m2)dm2

12

.

The differential decay rate has the form

dΓa→1234 = (2π)4 g2
a

2ma
|A((p1 + p2)2)|2 ×

× dΦ4(pa, p1, p2, p3, p4) . (19)

Equations (17,18) have a very simple interpretation: the
rate of resonant production is proportional to the fraction
of the total phase space which overlaps with the resonant
region, with the extra factor (1 + β2) accounting for the
off-mass-shell effects.

Applying (17,18) to the case of pp̄ annihilation into
KK̄ρ and KK̄ππ we get the following estimates for the φ
production:

Γpp̄→φρ
Γpp̄→KK̄ρ

∼ (πmφΓφ)(1 + β2) × (20)

× (2π)3Φ2(2mp,mφ,mρ)Φ2(mφ,mK ,mK)
Φ3(2mp,mK ,mK ,mρ)

= 0.053(1 + β2) (21)
Γpp̄→φπ+π−

Γpp̄→KK̄π+π−
∼ (πmφΓφ)(1 + β2) ×

× (2π)3Φ3(2mp,mφ,mπ,mπ)Φ2(mφ,mK ,mK)
Φ4(2mp,mK ,mK ,mρ)

= 0.014(1 + β2) (22)

Equation (22) at β = 0 agrees with the estimate given in
[16].

To demonstrate the effects of resonant FSI and to ex-
plore the difference between the full loop calculation and
the unitarity approximation we use the coupled channel
model described in Appendix B. In this model the loop
integrals are regularized by a form factor in the vertex
b → 12. Using a monopole form factor with cutoff pa-
rameter λ gives a ratio of the real to imaginary part of
the loop β = λ/P12. As an example we choose the masses
and resonance parameters corresponding to the process
pp̄→ KK̄ρ and calculate the φρ final state (see below for
a proper treatment of the spin factors). The results are
shown in Fig. 3.

Fig. 3. The distribution of the invariant mass of the KK̄
system for the reaction pp̄ → KK̄ρ at rest (spinless approxi-
mation). The full rescattering calculation is given by the solid
line: a β = 1, b β = 2, the phase space distribution by the
dotted line. The unitarity approximation (β = 0) is shown in
a by the dashed-dotted line, the resonance term in b by the
dashed line. All the distributions are nomalized relatively to
the total rate calculated in the plane wave approximation

4 The φ meson production in the reaction
p̄p→ KK̄π+π− at rest

In this section we consider φ meson production in pp̄ an-
nihilation at rest in the KK̄ππ channel. The KK̄ system
must be in a P -wave with C-parity CKK̄ = −1 to form
the φ meson. The ππ system can be either in the C-odd or
the C-even state, and, if we restrict ourselves to S-wave
annihilation, the following transitions are possible:

JPC = 1−− : pp̄(3S1)→ (KK̄)L=1,P=−1,C=−1

× (ππ)L=even,P=+1,C=+1(23)

JPC = 0−+ : pp̄(1S0)→ (KK̄)L=1,P=−1,C=−1

× (ππ)L=odd,P=−1,C=−1 (24)

The pp̄(2S+1LJ)KK̄ππ vertices with minimum number of
derivatives have the form:

Tpp̄(1−−)→KK̄ππ = g1ε
pp̄
µ (p1 − p2)µF1 (25)

Tpp̄(0−+)→KK̄ππ = g0εαβγδp
α
1 p

β
2p
γ
3p
δ
4F0 (26)

where g0 and g1 are the corresponding coupling constants,
εpp̄µ is the polarization vector of the pp̄(3S1) state, the pi
are the four-momenta of the particles in the final state (p1

and p2 correspond to K and K̄, and p3, p4 to ππ, respec-
tively). The vertex form factors are denoted by F1 and F0.
In the case (26), the strong ππ interaction due to the ρ
meson must be taken into account, using e.g. the method
described in Sect. 3. The results for the pp̄ annihilation
into the φρ channel will be published elsewhere.

In the rest of this paper we focus our attention on the
φ production from the triplet S-wave pp̄ state. The re-
cent partial wave analysis of the φππ channel measured
by OBELIX [6,37] demonstrates that the S-wave reac-
tion is dominated by the 3S1 initial state if the ππ system
is produced with invariant mass below the ρ resonance,
therefore our calculations can be directly compared with
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these data2. The coupling (25) is proportional to the rela-
tive momentum of the KK̄ pair, PKK̄ =

√
(pK − pK̄)2/2,

therefore the form factor in the annihilation vertex is im-
portant for damping the transition strength at large PKK̄ .
We use the following parametrizations:

F1(PKK̄) =


Λ2

Λ2 + P 2
KK̄

(a) — monopole

Λ4

(Λ2 + P 2
KK̄)2 (b) — dipole

(27)

where Λ is a cut-off parameter which will be determined
later. We neglect the final ππ interaction in the S-wave,
since the energy dependence of the FSI effects below the
f0(980) resonance is known to be rather smooth (see [38]
and references therein). For the sake of simplicity we also
neglect the FSI effects in theKπ systems; this assumption,
however, should be removed in further studies, because the
K∗ production is rather strong in the KK̄ππ channel [35,
36].

The calculation of the resonant rescattering amplitude
is similar to Sect.3. The result for the differential decay
rate is

dΓKK̄π+π−

dm2
KK̄

= (2π)7 g2
1

2mpp̄
|A1(m2

KK̄)|2 ×

×W (mpp̄,mKK̄) , (28)
W (mpp̄,mKK̄) = Φ3(mpp̄,mKK̄ ,mπ,mπ) ×

×Φ2(mKK̄ ,mK ,mK̄) (29)

where mpp̄ = 2mp, mKK̄ = √sKK̄ = 2
√
m2
K + P 2

KK̄
is

the invariant mass of the KK̄ system, and the enhance-
ment factor A1 has the form

A1(sKK̄) = f1(sKK̄)− f1(m2
φ) ×

× (i+ β(sKK̄))mφΓφ
sKK̄ −m2

φ + imφΓφ
, (30)

f1(sKK̄) = 2PKK̄F1(PKK̄) . (31)

Keeping the resonance term only gives the production rate

Γφπ+π− = (2π)7 g2
1

2
√
s

(πmbΓb)(1 + β(sKK̄)2) ×

× f1(m2
φ)W (mpp̄,mKK̄) (32)

which can be compared with the total decay rate to the
KK̄π+π− channel in the plane wave approximation:

Γφπ+π−

Γ 0
KK̄π+π−

= (πmbΓb)(1 + β2) ×

×
f1(m2

φ)W (mpp̄,mφ)∫
f1(m2

KK̄
)W (mpp̄,mKK̄)dm2

KK̄

.(33)

2 Due to low acceptance of the φρ channel the yields of the
φπ+π− channel measured by OBELIX are lower than those
measured by other groups (see Table 2)

Fig. 4. The distribution of the invariant mass mKK̄ for the
reaction p̄p(3S1) → KK̄π+π−: a β = 1, b β = 4. The full
calculation is given by the solid line, the resonance term only
by the dashed line, the plane wave approximation by the dash-
dotted line, the phase space distribution by the dotted line

For an explicit evaluation we proceed by the following
steps. First, the form factor (27) is parametrized by fitting
the experimental invariant mass distribution dσ/dmKK̄

in the mass range outside the φ resonance for the reac-
tion pp̄ → (KK̄)L=1ππ at rest. We use the data on the
reaction pp̄ → KSKLπ

+π− [36] which selects the final
states K0K̄0 with CKK̄ = −1 and LKK̄ = 1. Since the
partial wave analysis for the final state KSKLππ is not
available, we must rely on some assumptions about the
final state decomposition. One of them is the dominance
of the S-wave annihilation, which allows two possibilities:
pp̄(3S1, 1−−)→ (K0K̄0)C=−1(ππ)C=+1 and pp̄(1S0, 0−+)→
(K0K̄0)C=−1(ππ)C=−1. Second, we assume that the con-
tribution from the singlet spin state does not bring a
significant distortion of the shape of dσ/dmKK̄ outside
the φ meson region. The resulting cut-off parameter is
Λ = 0.2 GeV for the monopole form factor (27a) and
Λ = 0.4 GeV for the dipole form factor (27b).

After fixing the form factor for the pp̄ annihilation ver-
tex, the only parameter which remains to be determined
is the ratio of the real to imaginary part, β. For the dipole
form factor (27b) in the annihilation vertex, the loop in
the diagram Fig. 1b is finite, and using (8) one gets

β(sKK̄) =
3ΛP 2

KK̄
+ Λ3

2P 3
KK̄

, (34)

leading to β = 20 for Λ = 0.4 GeV. If the monopole form
factor (27a) is used in the annihilation vertex, then an ad-
ditional form factor is needed for the φKK vertex. Intro-
ducing a monopole form factor with the cutoff parameter
Λφ = Λ leads again to (34), and β = 4.3 at Λ = 0.2 GeV.
These estimates show that the real part of the loop is
significant even for rather soft form factors because the
imaginary part is suppressed by the factor P 3

KK̄
corre-

sponding to the P -wave of the relative motion in the KK̄
system.

The results for the distribution in the invariant mass
of the KK̄ system are shown in Fig. 4 for various values
of β. As already discussed in Sect. 3, the resonant FSI
mechanism causes a characteristic peak-dip structrure in
the invariant mass distribution around the φ mass. This
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MKK̄  (GeV)

dΓ
/d

M
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Fig. 5. The calculated distribution of the invariant mass mKK̄

for the reaction p̄p(3S1) → KK̄π+π− (β = 2) in comparison
with the experimental data [36]

Table 3. The calculated ratio of the φ resonance peak to
the total yield for the reaction pp̄(3S1) → (KK̄)L=1(ππ)L=0

at rest for various values of β, (5)

β 1.0 2.0 3.0 4.0

dipole form factor 0.046 0.083 0.139 0.211
monopole form factor 0.059 0.105 0.173 0.261

feature can be used to distinguish the resonant FSI mech-
anism from other mechanisms of φ production, including
the intrinsic strangeness [10,11] and the two-meson door-
way mechanism pp̄ → ρω → φππ [16], which give only a
peak in the region of the φ meson. The calculated mass
distribution for β = 2 is compared with the experimental
data in Fig. 5. A lower limit for β can, in principle, be
obtained from the experimental data using (11) provided
the position of the zero is known. This requires the sepa-
ration of different partial waves in the distribution of the
effective mass of the KK̄ system, which is not presently
available. However, from the fact that the resonance peak
in the experiment [6,37] is observed very close to the φ
mass, i.e. its position is not shifted due to a nearby zero,
we can conclude that β ≥ 2. Thus both theoretical esti-
mates and the data indicate a large value of the real part
of the loop. The calculated ratio of the φ resonance peak
to the total rate of the (KK̄)L=1(ππ)L=0 channel is shown
in Table 3 (the peak contribution is defined as the inte-
gral from the KK̄ threshold to the zero of the production
amplitude, see Figs. 4,5).

To calculate the absolute yield of the φππ we use the
measured branching ratio BR(pp̄→ KSKLπ

+π−) = 2.4 ·
10−3 [36] assuming a fraction of 3/4 for to the annihila-
tion from the 3S1 state. Considering all charge channels in
the intermediate state doubles the branching ratio leading
to our estimate BR(pp̄ → (KK̄)L=1π

+π−) = 3.6 · 10−3.
Using the results for the relative yield of the φ meson from
Table 3 gives the absolute yield to the φπ+π− channel for
the pp̄ annihilation at rest as BR(pp̄(3S1) → φπ+π−) ≥
3·10−4 for β ≥ 2. This result agrees well with the OBELIX
result for the φππ yield in liquid BR(φπ+π−) = 3.5(4) ·
10−4 [6] (this value practically excludes the contribu-
tion from the φρ channel). The other measurements of
BR(φπ+π−) shown in Table 2 give slightly higher val-

ues due to the φρ contribution. The ASTERIX analy-
sis [1] gives BR(pp̄(S) → φπ+π−) = 4.7(11) · 10−4 and
BR(pp̄(1S0) → φρ) = 3.4(10) · 10−4. Using these branch-
ing ratios and the fact that the singlet S-wave corresponds
to about one quarter of the total annihilation in liquid one
gets BR(pp̄(3S1) → φπ+π−) = BR(pp̄(S) → φπ+π−) −
1
4BR(pp̄(1S0) → φρ) = 3.8(13) · 10−4, in agreement with
the OBELIX measurement as well as with our calcula-
tions. Note, that the old bubble chamber measurement
[36] BR(pp̄(S) → φ→KSKLπ

+π−) = 1.8(3) · 10−4 gives
BR(pp̄(S) → φπ+π−) = BR(pp̄(S) → KSKLπ

+π−)/
BR(φ → KSKL) = 5.4(9) · 10−4 in good agreement with
the LEAR results.

The two-step mechanism considered is one of many
possible two-step processes. Other four-particle interme-
diate states to be discussed include the K∗K̄ππ, KK̄∗ππ,
and K∗K̄∗ππ states which arguably can lead to Lipkin
cancelations [13]. However, because the branching ratio
for these channels is much smaller than for the KK̄ππ
channel and the dispersion integral (8) is saturated mainly
in the low s region due to the relatively soft form factors,
we do not expect strong cancellations between the con-
tributions from these additional four-particle states. We
do not include the φ − ω mixing term in order to avoid
possible double counting3.

The contribution of the ρω intermediate state, which is
potentially significant [16], remains to be calculated, but
there is no reason to expect that there is a cancelation
between the ρω and KK̄ππ terms (their relative phase is
an unknown parameter).

Using (28) one can estimate the dependence of the rela-
tive φππ yield on the invariant mass of the pp̄. For the sake
of simplicity we use the phase space distribution for the
ππ pair and the form factors for the (KK̄)L=1 system de-
scribed above. The results shown in Table 4 demonstrate
that the fraction of the total phase space of the KK̄ππ
system, which is favourable for the resonant φ production,
decreases with increasing total energy. This is in qualita-
tive agreement with the general trend seen in OZI rule
violation in pp̄ annihilation4.

5 Conclusion

We have developed a general formalism describing res-
onant final state interaction in a multiparticle system.
This mechanism is shown to play an important role in
nucleon-antinucleon annihilation into OZI-rule breaking
channels (φππ, φρ). The resonant rescattering mechanism

3 The φ− ω mixing goes via a two-step mechanism with the
KK̄, K∗K̄, KK̄∗, K∗K̄∗ intermediate states

4 To obtain the absolute branching ratio for the φππ chan-
nel from the results shown in Table 4, the energy dependence
of the vertex pp̄ → (KK̄)L=1ππ, which is experimentally un-
known, must be taken into account. Because the K and K̄
share the same s-quark line, the KK̄ pairs are predominantly
produced with limited relative orbital momentum, and the en-
ergy dependence of the relative P -wave KK̄ production is not
expected to be strong
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Table 4. The calculated ratio of the φ resonance peak to the
total yield BR(φππ)/BR((KK̄)L=1ππ) for the reaction pp̄ →
(KK̄)L=1ππ as a function of the total energy

√
spp̄/mp 2 2.5 3 4

dipole form factor, β = 2 0.083 0.050 0.039 0.031
monopole form factors, β = 2 0.105 0.058 0.041 0.027

p̄p → π+π−KK̄ → π+π−φ is studied in detail. Off-mass-
shell contributions are found to be very significant for this
process, while the unitarity approximation is small. The
interference of the resonant term with the nonresonant
background which is essential for providing a correct an-
alytical structure of the total amplitude in the case of
elastic resonant rescattering, leads to the characteristic
peak-dip structure of the invariant KK̄ mass distribution
for JP

KK̄
= 1−. This feature can help to distinguish the

resonant FSI mechanism from other mechanisms of φ pro-
duction when high resolution partial wave analysis of the
KK̄ production becomes available. The φ peak can get
an additional enhancement due to this interference effect.
The rate of the φππ production at rest from the 3S1 state
is in good agreement with the experimental data [1,6,30].
Thus no unexplained OZI rule violation is required in this
case — the same conclusion was obtained earlier for the
φπ0, φφ, φγ channels as well (see [24,26,27] and references
therein). The φ production due to resonant FSI decreases
with increasing total energy as the fraction of the total
phase space favourable for the resonance formation gets
smaller. This feature agrees with the general trend of the
OZI rule violation in the nucleon-antinucleon annihilation
which is decreasing as a function of energy.

It would be desirable to extend the present approach to
the case when resonant FSI effects are taken into account
simultaneously in the different subsystems mentioned ear-
lier in order to achieve a unified description of the produc-
tion of the φ, ρ, and K∗ resonances.

We are grateful to M. Sapozhnikov and B.-S. Zou for stimulat-
ing discussions.

A Appendix: Phase space

The differential n-particle phase space dΦn(p, p1, p2, . . . , pn)
is defined by

dΦn(p, p1, p2, . . . , pn) =

= (2π)−3nδ4(p−
n∑
i=1

pi)
n∏
i=1

d3pi
2Ei

(35)

where p is the total four-momentum of the particles with
four-momenta pi = (Ei,pi). The phase space reduction
formula has the form

dΦn(p, p1, p2, . . . , pn) = dΦn−1(p, px, p3, . . . , pn) ×
× dΦ2(px, p1, p2)(2π)3dp2

x (36)

The total n-particle phase space for the decay a→ 12 . . . n
is

Φn(ma,m1,m2, . . . ,mn) =
∫
dΦn(p, p1, p2, . . . , pn) ,

p2 = m2
a . (37)

B Appendix: Resonant FSI in a coupled
channel model

In order to describe the resonant final state interaction
in a two-particle system, we introduce a variant of the
Weisskopf-Wigner (WW) model with two channels. Chan-
nel 1 is the scattering channel of interest, and channel 2
has a bound state |b〉 with bare mass m2

0 (the rest of the
dynamics in the second channel is ignored). The only in-
teraction in the model results from the coupling between
the channels. The T -matrix, as a function of the invari-
ant mass squared s, is defined by the Lippmann-Schwinger
equation(

T11 T12

T21 T22

)
=
(

0 V
V + 0

)
+

+
(

0 V
V + 0

)(
G0

1(s) 0
0 G0

2(s)

)(
T11 T12

T21 T22

)
(38)

where V is the interaction between channels 1 and 2 and
G0

1(s) and G0
1(s) are the free Green functions:

G0
1(s) =

2
π

∫ ∞
0

|k〉〈k|
s/4−m2 − k2

k2dk (39)

G0
2(s) =

|b〉〈b|
s−m2

0

. (40)

Here |k〉 denotes the free two-particle state with relative
momentum k, both particles have the same mass m, and
s = 4(k2 +m2). We assume the channel coupling to have
the following form (all particles are spinless)

〈k|V |b〉 = gξ(k) =
g

k2 + µ2
(41)

where g is the coupling constant and µ characterizes the
range of interaction.

The solution for the scattering amplitude in channel 1
has the form

f(s) = −〈k|T11(s)|k〉 = − g2ξ(k)2

s−m2
0 −Π(s)

(42)

where the mass operator Π(s) is given by

Π(s) = g2〈ξ|G0
1(s)|ξ〉 =

g2

2µ(k + iµ)2
. (43)

From (42,43) the poles of the amplitude can be easily
found. For the sake of illustration we consider the case of
weak coupling (the bare state b is assumed to be above the
threshold of the scattering channel), then the scattering
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amplitude has a resonance pole at s = (mb − iΓb/2)2 ≈
m2

0 + Π(m2
0). The resonance shift δmb = mb − m0 and

width Γb due to the coupling to the open channel have
the form

δmb ≈
Re Π(m0)

2m0
(44)

Γb ≈ −
Im Π(m0)

m0
=

2g2k2
bξ

2(kb)
m0

(45)

where kb =
√
m2
b/4−m2.

Now we consider the decay a → 123 described by a
pointlike vertex with a coupling constant ga. Using stan-
dard results from scattering theory we find that the decay
amplitude with the final state interaction between parti-
cles 1 and 2 taken into account is proportional to the scat-
tering wave function at zero distance r12 between particles
1 and 2. The result for the above described model has the
form

Fa→123 = ga〈r12 = 0|k(+)
12 〉

= ga〈r12 = 0|k12〉+
+ 〈r12 = 0|G0(s12)T (s12)|k12〉 (46)

= ga

(
1− g2(µ+ ik12)ξ2(k12)

s12 −m2
0 −Π(s12)

)
(47)

where the relative momentum k12 is related to the the
square of the invariant mass of the subsystem (1+2):

s12 = 4(m2 + k2
12) . (48)

Formula (47) can be rewritten explicitly showing the
pole-zero structure of the amplitude:

Fa→123 = ga
s12 −m2

0 −∆(s12)
s12 −m2

0 −Π(s12)
(49)

∆(s12) =
g2

2µ
1

(k2
12 + µ2)

. (50)

Note that the nominator in (49) is a real function for real
s12 which has a zero at s12 = m2

z ≈ m2
0 +∆(m2

b). The dis-
tance between the zero and the pole in the weak coupling
limit is

mz −mb =
µΓb
2kb

. (51)
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